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Lecture 4  Recap:  normal metals and the clectron-phonon interaction* 

 

1. Normal metals:  Sommerfeld-Bloch picture 

2. Screening 

3. Fermi liquid theory 

4. Electron-phonon interaction. 

Crucial point:  (most) normal metals characterized by various frequency scales (plasma 

frequency, Fermi energy, band gap…:  Debye D).  Tcis small compared to all of these, hence in 
discussing relevant properties of normal states can take T→0 limit.  [not necessarily true in 
exotics] 

1. Normal metals 
Sommerfeld:  groundstate is determinant of plane wave states with (p) = p2/2m, filled up to 

Fermi momentum pF = ħkF, kF = (32n)1/3.  Thus F typically ~ a few eV.  (and kF ~ 1Å-1).  At 

finite T, Fermi distribution with chemical potential  (T) = F + 0 (T2/∈F)  

 cV = (2/3) ݇஻
ଶT (dn/d), dn/d = DOS of both spins at FS =3n/2F.  ߯ ൌ ஻ߤ	

ଶሺ݀݊ ⁄ߝ݀ ሻ.				ߪ ൌ
݊݁ଶ	߬ ݉⁄ ,   determined by (a) impurities (b) e-phonon collisions (no e- - e- collision effect on  

in this model)  WF:  / T = const. (if  = ). 

Bloch:  ߰ሺ࢘ሻ ൌ ௞௡ሺ࢘ሻݑ exp ݅݇ ∙ ࢘	,  (where ݑ௞௡ሺ࢘ ൅ ሻࡾ ≡    .௞௡ሺ࢘ሻ)  = n(k)ݑ

k = quasimomentum of e-.  velocity  v(k)= 
ଵ

԰
	
డఌ೙൫௞൯

డ௞
		, electric current = ev(k). 

Can define Fermi surface as before, but in general not spherical:  also define 

		:ܱܵܦ ௗ௡
ௗఌ
ൌ 	 ଶ

ሺଶగ԰ሻమ
׬		

ி.௦.
	݀ܵ vி൫ ො݊൯⁄    

still have cv/T,   dn/d so unique ratio for cv /T.  Note e- - e- processes can contribute to  (or 

rather ) in Bloch theory, because total quasimomentum K not conserved by U-process.  Still 

expect that to extent  = , WF law obeyed 

                                                 
* Ref: AJL, Quantum Liquids, appendix 5A 
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2. Screening.  [will mostly neglect band-structure effects here] 
 
 In 3D long-range part of Coulomb interaction very important:  will tend to screen out 
localized charge impurities, and also greatly affect response to applied electric field.  Simplest 
theory is RPA:  system responds like free gas but to local field which is sum of externally 
applied one and that generated by the redistribution of the charge itself.  Quantitatively, let 

(q) be “bare”† response to external field, i.e. that calculated without account of long-range 
part of Coulomb interaction.  Technically*  
 

݁ଶ	߯௢ሺ߱ݍሻ 	≡ 	െ	
ሻ߱ݍሺߩߜ

ሻ߱ݍሺ߮ߜ
ቤ
௡௢	௅ோி

																	߮ሺ߱ݍሻ ൌ .ܨ ܶ.	of	electrostatic	potential	

	
ሾnote	defined	so	that	stat	is	positiveሿ.		Then	basic	assumption	of	RPA	is		


ሻ߱ݍሺߩߜ ൌ 	െ	݁ଶ߯௢	ሺ߱ݍሻ	߮௧௢௧ሺ߱ݍሻ,			where

߮௧௢௧ሺ߱ݍሻ 	≡ 	߮௘௫௧ሺ߱ݍሻ ൅	߮௜௡ௗሺ߱ݍሻ


 

But ind(q)  obeys Poisson’s law 

ሻݐݎሺ	ଶ߮௜௡ௗ׏ ൌ 	െߩሺݐݎሻ ߳௢⁄  

or equivalently 

ሻ߱ݍଶ߮௜௡ௗሺݍ ൌ െߩሺ߱ݍሻ ߳௢⁄  

putting these together: 

ሻ߱ݍሺߩߜ ൌ 	൭
ି௘మఞ೚ሺ௤ఠሻ

ଵା	 ೐
మ

ഄ೚೜మ
	ఞ೚ሺ௤ఠሻ

		 . ൱		߶௘௫௧ሺ߱ݍሻ   

If then we define the “true” response ߯ሺ߱ݍሻ ≡ 	 ିఋఘሺ௤ఠሻ

ఋ	ఝ೐ೣ೟ሺ௤ఠሻ
, we get 

߯ሺ߱ݍሻ ൌ 	
߯௢ሺ߱ݍሻ

1 ൅	 ݁
ଶ

߳௢ݍଶ
	߯௢ሺ߱ݍሻ

					ሺ§ሻ																				ሺܵܫ:	in	cgs, ݁ଶ ⁄௢ߝ ⇒  ଶሻ݁ߨ4

                                                 
† called by PN the “screened” RF.  [beware sign conventions (and factors of e !) in this argument!] 
* thus o(q) is the (particle) density response function rather than that of the charge density ( ≡ charge density). 
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   3 important consequences of basic formula (§ሻ: 
1. Static (TF) screening:  in general (q0) is a complicated function, but for ݍ ≪ ݇ி reduces 

to ߯௢ሺ0ݍሻ 	≅ const. ൌ 	݀݊ ⁄ߝ݀ .   Thus, if we define ݇ி்
ଶ 	≡ 	 ሺ݁ଶ/ߝ௢ሻ	ሺ݀݊ ⁄ߝ݀ , ሻ then  

߯ሺ0ݍሻ	
≅

ሺݍ ≪ ݇ிሻ
												

ሺ݀݊ ⁄ߝ݀ ሻ

1 ൅	݇ி்
ଶ ⁄ଶݍ

 

If we apply this formula to the case of a finite impurity charge at the origin,  we find the 

total potential induced by it plus the screening cloud falls off as ିݎଵ expെ	݇ி்ݎ.  Typical 
values of kFT are of the same order as kF or somewhat larger [quantitatively:  

݇ி் ݇ி ൌ 0.815	ሺݎ௦ ܽ௢⁄ ሻଵ ଶ⁄ , ௦ݎ 	≡⁄  interparticle distance ሺ3 ⁄݊ߨ4 ሻଵ ଷൗ , ao = Bohr radius]. 

2. Plasmons:  if at any point (q) has a pole, this indicates the possibility of a free oscillation 
in absence of external field.  Now in general, by perturbation theory 

߯௢ሺ߱ݍሻ ൌ 	෍2߱௡௢	
௡

ห〈݊หߩ௤ห݋〉ห
ଶ

߱௡௢ଶ െ	߱ଶ 	 

and since† q can excite only particle-hole pairs with  no ~ vF q, for ≫vFq. 

߯௢ሺ߱ݍሻ ൌ 	െ	߱ିଶ෍2߱௡௢
௡

ห〈݊หߩ௤ห0〉ห
ଶ
ൌ 	െ	݊ݍଶ ݉߱ଶ⁄

																																																																								ሺTRK	sum	ruleሻ
 

in this regime, 

߯ሺ߱ݍሻ ൌ 		
߯௢ሺ߱ݍሻ

1 െ	 ݊݁ଶ
௢݉߱ଶߝ

 

pole occurs at 

߱ଶ ൌ ݊݁ଶ ⁄௢ߝ݉ 	≡ 	߱௣ଶ	 													߱௣	typically	~5 െ 10ܸ݁	ሺso ൐ 	  ிሻߝ

(strictly speaking, Sommerfeld-model result (jellium).  Not quantitatively valid in presence 
of finite band structure.) 

  

                                                 
ሻ݋ݍ௘௫௧ሺ߮ߜ  ൌ 	ܼ݁ ଶݍ௢ߝ 		⇒ ሻݎሺߩߜ		 ൌ 	െ	݁ଶ 	ቀ

ௗ௡

ௗఌ
	ቁ		

௓௘

ସగఌ೚௥
	exp ൌ 	݇ி்	ݎൗ  

† Argument valid only for translation-invariant case. 
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3. Nature of groundstate in RPA. 
 A general expression for the Coulomb energy in 3D is 

〈 ௖ܸ〉 ൌ 	
1
2
෍ ௤ܸ	
௤

					.			〈௤ିߩ௤ߩ〉 ௤ܸ ൌ 	 ݁ଶ ⁄ଶݍ௢ߝ  

In the free-gas GS, <q –q> is given (for q≠0) by the HF expression ∑ ݊௞ି௤ ଶ⁄ ൫1 െ௞

݊௞ା௤ ଶ⁄ ൯ ∼ ԰ݍvிሺ݀݊ ⁄ߝ݀ ሻ.  This would give a contribution to the Coulomb energy which 

is ∝ 	ݍ ଵ and thus v. large asିݍ	 → 0.  The system can avoid this by creating a “cancelling” 
density fluctuation of wavelength q, but this costs an energy ~	԰ݍvி.  Thus we must 
compromise by building in an appropriate no. of “virtual” plasmons into the free RPA GS.  
It turns out (not obviously, at this level!)* that the contribution of the mode q to the GSE is 

≪ above, in fact simply 
ଵ

ଶ
԰߱௣.  (see e.g. P+N QL § 5.3) 

3.  Fermi liquid theory (first for liquid 3He, then normal metals) 

 The Coulomb interaction in real metals is very strong, and at shorter wavelengths RPA is 
almost certainly not a complete account of its effects.  Why, nevertheless, do many metals 
behave so like the Bloch-Sommerfeld (“textbook”) model? 

 Note:  Fermi liquid approach rests on ansatz about GS (excluding superconductivity for the 
moment).  Cannot be demonstrated a priori for any particular metal! 

 Landau ideas of adiabatic evolution:  definition of quasiparticles, “occupation number” 

n(p). 

 Translationally and rotationally invariant system:  definition of ݉∗, ,ℓܨ ܼℓ	ቀ≡ ℓܨ
ሺ௦ሻ, ℓܨ

ሺ௔ሻቁ.  

Generalization to system with crystal-lattice effects.   

 Molecular fields (generalization of RPA).   

 Note molecular fields only come into play in presence of “macroscopic polarization”  no 
effect on eg specific heat, nor on transport props provided we work in terms of 
“conductivities” rather than “diffusivities”.   

 Modern theory of normal metals combining Landau, Bloch and screening (RPA) 

considerations.  In general, o(q) is effected by Landau molecular fields, eg. 

߯௢ሺ0ݍሻ௤≪௤ಷ	~ሺ݀݊ ⁄ߝ݀ ሻቀ1 ൅ ௢ܨ
ሺ௦ሻቁ

ିଵ
	, so kFT is quantitatively modified.  However, for the 

translation-invariant (“jellium”) case, p is not affected, since the result  
߯௢ሺ߱ݍሻ ≅ 		െ	݊ ଶݍ ݉߱ଶ⁄  turns out still to be valid. 

                                                 
* If we write Ψ௢~	൫1 ൅ 〉 ௣ା൯|0ۧ where |0ۧ is free-gas GS and ܳ௣ା creates plasmon, thenܳߙ	 ௖ܸ	〉~	ሺ1 െ  ሻ.const. /qߙ
and the extra KE	 ∝  .ଶ.  Hence there is an optimum value of ߙ	
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 [Another demonstration:  Consider the sum rules for the true (q): 

ଵିߨ න ߱ିଵ
ஶ

௢
		߯ሺ߱ݍሻ	݀߱

ሺܭܭሻ
ൌ 	߯ሺ݋ݍሻ 	→ 	

௢ߝଶݍ
݁ଶ

		ሺݍ → 0ሻ	൫൅݋ሺݍସሻ൯

ଵିߨ න ߱
ஶ

௢
߯ሺ߱ݍሻ	݀߱ ൌ ଶݍ݊ ݉⁄ 						ሺܴܶܭሻ

	
ଵିߨ න ߱ଷ

ஶ

௢
		߯ሺ߱ݍሻ ൌ 	 〈ቂ݆௤, ൣ݆ି ௤, 〈൧ቃܪ 		ሺtranslation	invariant	system	only!ሻ

								ൌ 	
݊ଶ݁ଶݍଶ

݉ଶߝ௢
൅ Puff	Mihara									ସሻݍሺ݋

 

Together these imply that for ݍ → 0	߯ሺ߱ݍሻ is exhausted by a single pole at ߱௣ 	≡

	ሺ݊݁ଶ ⁄௢ߝ݉ ሻଵ ଶൗ .  ] 

4. Electron-phonon interaction 

 Simplest theory is generalization of RPA. Define the “bare” responses 

߯௘௟
ሺ௢ሻሺ߱ݍሻ, ߯௜௢௡

ሺ௢ሻሺ߱ݍሻ 

of the electron and ion particle densities to the local field, and the “true” responses 
χel(q߱),χion(q߱) similarly, (i.e. in calculating χሺoሻ's	can	ignore	all	LR	Coulomb	forces,	
whether	el‐el,	el‐ion	or	ion‐ionሻ.	Only	problem	is	to	keep	signs	straight!	Define	the	χ’s	as	
particle	density	responses	and	the	’s	as	charge	densities,	then	

ሻ߱ݍ௘௟ሺߩߜ ൌ െ݁ଶ߯௘௟
ሺ௢ሻሺ߱ݍሻ߮௧௢௧ሺ߱ݍሻ 

ሻ߱ݍ௜௢௡ሺߜ ൌ െܼଶ݁ଶ߯௜௢௡
ሺ௢ሻሺ߱ݍሻ߮௧௢௧ሺ߱ݍሻ                     [(charge on ion = Ze) 

߮௧௢௧ሺ߱ݍሻ ≡ ߮௘௫௧ሺ߱ݍሻ ൅ ߮௜௡ௗሺ߱ݍሻ 

where ߮ind(q߱ሻ	satisfies	ሺPoissonሻ	

ଶ߮௜௡ௗ׏ ൌ
1
߳௢
ሺߩߜ௘௟ ൅  ௜௢௡ሻߩߜ

Solving these: 

ሻ߱ݍ௘௟ሺߩߜ ௘௫௧߮ߜ ≡ െ݁ଶ߯௘௟ሺ߱ݍሻ⁄  

ൌ
െ݁ଶ߯௘௟

ሺ௢ሻ

1 ൅ ݁ଶ
߳௢ݍଶ

ቀ߯௘௟
ሺ௢ሻ ൅ ܼଶ߯௜௢௡

ሺ௢ሻቁ
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and similarly for ߜion (q߱). Thus,  

߯௘௟ሺ߱ݍሻ ൌ
߯௘௟
ሺ௢ሻ

1 ൅ ݁ଶ
߳௢ݍଶ

ቀ߯௘௟
ሺ௢ሻ ൅ ܼଶ߯௜௢௡

ሺ௢ሻቁ
 

߯௜௢௡ሺ߱ݍሻ ൌ
߯௜௢௡
ሺ௢ሻ

1 ൅ ݁ଶ
߳௢ݍଶ

ቀ߯௘௟
ሺ௢ሻ ൅ ܼଶ߯௜௢௡

ሺ௢ሻቁ
																					ሺ†ሻ 

These formulas are general but rather messy. To see the essence of the results, it is convenient to 
consider limit ߱≪qvF≪kFvF (thus neglecting plasmons) and moreover neglect all short-range 
interactions of ions: thus equation of motion is taken to be 

௜௢௡ߩ߲
ݐ߲

ൌ െસ ∙ ௜௢௡ࡶ ,			
௜௢௡ܬ߲
ݐ߲

ൌ 	
݊௜௢௡
݉

 ࡲ

and thus from definition of ߯௜௢௡
ሺ௢ሻ  ,      ߯௜௢௡

ሺ௢ሻሺ߱ݍሻ ൌ െ݊௜௢௡ݍଶ ⁄.ଶ߱ܯ  

If we define the “bare” ion plasma frequency by 

Ω௣ଶ ≡ ܼଶ݊௜௢௡݁ଶ/߳ܯ௢ 

and the electron TF wave vector by 

்݇ி
ଶ ≡ 	 ሺ݁ଶ/߳௢ሻ൫߯ሺݍ, 0ሻ௤≪௞ಷ൯ ≡ ≅൫ߢ ሺ݁ଶ/߳௢ሻሺ݀݊/݀߳ሻ൯ 

we can write the results in the form 

߯௘௟ ൌ
ߢ

1 ൅ ்݇ி
ଶ ଶݍ/ െ Ω௣ଶ/߱ଶ 

 

߯௜௢௡ ൌ
െ݊௜௢௡ݍଶ/߱ܯଶ

1 ൅ ݇ி்
ଶ ଶݍ/ െ Ω௣ଶ/߱ଶ 

In the limit of infinitely massive ions, (M, p0) we recover the previous RPA results for 
the electrons. 
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 The expressions for el	and	ion	have	a	pole,	which	for	q≪kTF, ≪p	occurs	at	 

߱ ൌ	ܿ௦ݍ							ܿ௦ ≡ Ω௣/்݇ி	 

For a jellium model the quantity p/kTF		is	equal	toቀ
௠௓

ଷெ
ቁ
ଵ/ଶ

vி so the velocity of sound  

cs ~ (m/M)1/2
VF (Bohm-Staver).  In the more general case we have ߱௣௛

ଶ ሺݍሻ ൌ Ω௣ଶ ሺ1 ൅ ்݇ி
ଶ ⁄ଶݍ ሻ⁄  

 

Effective electron-electron potential 

 The above results are equivalent to the replacement of ߮ext	by	the	screened	potential 

߮ሺ߱ݍሻ ≡
߮ୣ୶୲	ሺ߱ݍሻ

1 ൅ ்݇ி
ଶ ଶݍ െ Ω௣ଶ ߱ଶ⁄ൗ

 

Now let us take ߮ext(q߱) to be the potential of a second electron, i.e. e2/oq2. This gives an 
effective e-–e- interaction. 

Vୣ୤୤
ୣ୪ିୣ୪ሺ߱ݍሻ ൌ

݁ଶ ߳௢ݍଶ⁄

1 ൅ ்݇ி
ଶ ଶݍ െ Ω௣ଶ ߱ଶ⁄ൗ

 

or using above relation to eliminate p	in	terms	of	pkሺqሻ:*	

Vୣ୤୤
ୣ୪ିஜሺ߱ݍሻ ൌ

݁ଶ

݁௢
∙

1
ଶݍ ൅ ்݇ி

ଶ ቊ1 ൅
߱௣௛
ଶ ሺݍሻ

߱ଶ െ ߱௣௛
ଶ ሺݍሻ

ቋ 

	

First term is e- – e- interaction self-consistently by e- gas, second is interaction via exchange of 

virtual phonons. Note second contains 	and	thus	is	retarded	in	time	ሺillustrate	with	
“polarization”	pictureሻ.		In	this	simple	model	Veff	is	zero	at	zero	frequency,	then	increasingly	
attractive	for		൏	phሺqሻ.	ሾ: This would predict all metals superconducting.]  : likely 
quantitative inaccuracy of above for real metals with q~qF. 

 

  

                                                 
* We need to use the relation  ߱௣௞ሺݍሻ ൌ

ஐೝ௤

൫௞ಷ೅
మ ା௤మ൯

భ/మ   (cf. (†) above) 
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The quantum picture. 

 The above argts. never referred to the fact that the ionic vibrations are quantized. 
However, it should be possible to interpret them in terms of the emission and absorption of 
phonons. 

 Consider a given wave vector q.  With it is associated a classical lattice vibration 

(longitudinal acoustic) with frequency. phሺqሻ	and	a	phonon	of	energy	ħphሺqሻ.	Consider	a	
process	in	which	an	electron	of	wave	vector	k	emits	ሺsayሻ	a	phonon	of	wave	vector	q,	going	
thereby	into	a	state	of	wave	vector	k'.	Because	of	the	periodicity	of	the	lattice	we	must	
satisfy	the	condition	

k	–	k'	ൌ	q	൅	G 

As usual, we call the process normal (N) if G = 0, Umklapp (v) if G ്	0.	For	the	moment	let	us	
focus	on	N‐	processes.	If	the	process	is	a	real	one,	we	must	also	involve	conservation	of	
energy,	but	for	a	process	leading	to	a	virtual	intermediate	state	energy	need	not	be	
conserved.	

	 There	will	be	some	matrix	element	gkk'	 for this process. To find it, we could either (1) 
go back to first principles, or (2) rederive the effective el – el interaction in terms of phonons and 
compare with our earlier result based in a classical treatment. (2) is more instructive and will 
now be done: 

 

q = k – k' 
 
 
 

k                k'                     k 
 

Consider the process depicted graphically above, in which an electron, initially in state k, emits a 
phonon of wave vector q, going thereby into an (empty) state k'; subsequently it re-absorbs the 
phonon and returns to its original state. The intermediate state of the system is virtual. This 
changes the energy of the state |0> of the system, which contains one electron in k: by 
straightforward 2nd-order perturbation theory. 

Δܧ௢ ൌ෍
|〈0|V|݅〉|

௢ܧ െ ௜ܧ

ଶ

௜
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In our case, Eo is ∊ k), Ei	is	the	energy	of	the	state	with	electron	in	k'	and	the	phonon	in	q,	i.e.	
∊(k') + ħሺqሻ,	and	൏0|V|	݅൐	is	the	matrix	element	gkk' (which is what we essentially want to 
find). Hence we have, with the sum over k' going over unoccupied states only, 

Δ߳௞ ൌ ෍
|݃௞௞ᇱ|ଶ

߳ሺ݇ሻ െ ߳ሺ݇ᇱሻ െ ԰߱ሺࢗሻ
≡෍ሺ1 െ ݊௞ᇱሻ

௞ᇱ௞ᇲ
ሺ௨௡௢௖௖ሻ
ሺఙᇲୀఙሻ

|݃௞௞ᇱ|ଶ

߳ሺ݇ሻ െ ߳ሺ݇ᇱሻ െ ԰߱
 

The total change in energy of the system due to exchange of phonons is 

Δܧ ൌ 	෍݊௞ఙΔ߳௞ఙ
௞ఙ

 

ൌ෍݊௞ఙሺ1 െ ݊௞ᇱఙሻ
௞௞ᇲ
ఙ

ሺ݃௞௞ᇱሻଶ

߳ሺ݇ሻ െ ߳ሺ݇′ሻ െ ԰߱ሺࢗሻ
 

 

If we add a term with k and k' interchanged and divide by ½, we get (a) a term which is linear in 
the nk and can be written  

෍݊௙௞
௞

 

. (fk ind of nk') and (b) a term in nknk': 

Δܧ ൌ 	෍݊௞ఙ ௞݂ െ
1
2
෍݊௞݊௞ᇱ|݃௞௞ᇲ|

ଶ ቊ
1

߳ሺ݇ሻ െ ߳ሺ݇ᇱሻ െ ԰߱௣௛ሺࢗሻ
൅

1
߳ሺ݇′ሻ െ ߳ሺ݇ሻ െ ԰ఠ௣௛ሺࢗሻ௞ఙ௞ఙ

 

ൌ	෍݊௞ఙ ௞݂ െ
1
2
෍݊௞݊௞ᇱ
௞௞ᇲ
ఙ

∙
2԰߱௣௛|݃௞௞ᇲ|

ଶ

ሾ߳ሺ݇ሻ െ ߳ሺ݇ᇱሻሿଶ െ ԰ଶ߱ଶ
௣௞ሺࢗሻ௞ఙ

 

The effective interaction  V௘௙௙
௘௟ି௘௟ሺ࢑, ࢑′ሻ which leads to the second term as a Hartree-Fock term is 

given by the second derivative -- 2E/nknk', 

݅. ݁. Δܧ ≡ െ
1
2
෍V௘௙௙ሺ݇݇′ሻ݊௞݊௞ᇱ
௞௞ᇱ

 

V௞,௞ᇱ
ୣ୤୤ ൌ ൅

2԰߱௣௛|݃௞௞ᇱ|ଶ

ሾ߳ሺ݇ሻ െ ߳ሺ݇′ሻሿଶ െ ԰ଶ߱௣௛
ଶ ሺݍሻ

ࢗ																			, ≡ ࢑ െ ࢑′ 

This result is quite general and independent of the detailed form of the matrix element gkk'. 
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Let us now ask: What is the matrix element in the simple (“jellium”) model we used above? We 
compare the expression just derived with the classical result 

Vୣ୤୤ሺݍ, ߱ሻ ൌ
݁ଶ

߳௢

1
ଶݍ ൅ ݇ி்

ଶ ቊ1 ൅
߱௣௛
ଶ ሺݍሻ

߱ଶ െ ߱௣௛
ଶ ሺݍሻ

ቋ 

and put q = k–k', ൌሺ∊ሺkሻ –	∊	ሺk’ሻ/ħ.  The first term above is irrelevant, since it gives the effect 
of the screened electron-electron interaction, and does not refer to phonons. If we demand 
agreement for the second, the matrix element must be given by 

|݃௞௞ᇱ|ଶ ൌ
1
2

݁ଶ ߳௢⁄

ଶݍ ൅ ݇ி்
ଶ ԰߱௣௛ሺݍሻ 							ሺ	ࢗ ≡ ࢑ െ ࢑′ሻ 

This formula should not be taken quantitatively when q is too large ~ (kF, kTF or kD). But for 
reasonably small q it should give at least the qualitatively correct behavior. The crucial point to 

notice is that for q0, the matrix element to emit (or absorb) an acoustic phonon of wave vector 

q is proportional to q1/2. (since phሺqሻ~qሻ.	This	result	is	actually	not	model‐dependent.	Note	
that	in	view	of	the	definition	of	݇ி்

ଶ , the long-wavelength matrix element can be written simply 

|݃௞௞ᇱ|௤→଴
ଶ ൌ

1
2
∙
԰߱௣௛ሺݍሻ
݃ሺ߳ிሻ

 

i.e. inversely proportional to ݃ሺ߳ிሻ (because efficiency of screening  ݃ሺ߳ிሻ) 
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